Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888173

RESUMO

The linear spectral emissivity constraint (LSEC) method has been proposed to separate temperature and emissivity in hyperspectral thermal infrared data with an assumption that land surface emissivity (LSE) can be described by an equal interval piecewise linear function. This paper combines a pre-estimate shape method with the LSEC method to provide an initial-shape estimation of LSE which will create a new piecewise scheme for land surface temperature (LST) and LSE separation. This new scheme is designated as the pre-estimate shape (PES)-LSEC method. Comparisons with the LSEC method using simulated data sets show that the PES-LSEC method has better performance in terms of accuracy for both LSE and LST. With an at-ground error of 0.5 K, the root-mean-square errors (RMSEs) of LST and LSE are 0.07 K and 0.0045, respectively, and with the scale factor of moisture profile 0.8 and 1.2, the RMSEs of LST are 1.11 K and 1.14 K, respectively. The RMSEs of LSE in each channel are mostly below 0.02 and 0.04, respectively, which are better than for the LSEC method. In situ experimental data are adopted to validate our method: The results show that RMSE of LST is 0.9 K and the mean value of LSE accuracy is 0.01. The PES-LSEC method with fewer segments achieves better accuracy than that of LSEC and preserves most of the crest and trough information of emissivity.

2.
Sensors (Basel) ; 16(5)2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27187408

RESUMO

Land Surface Temperature (LST) is a key parameter in climate systems. The methods for retrieving LST from hyperspectral thermal infrared data either require accurate atmospheric profile data or require thousands of continuous channels. We aim to retrieve LST for natural land surfaces from hyperspectral thermal infrared data using an adapted multi-channel method taking Land Surface Emissivity (LSE) properly into consideration. In the adapted method, LST can be retrieved by a linear function of 36 brightness temperatures at Top of Atmosphere (TOA) using channels where LSE has high values. We evaluated the adapted method using simulation data at nadir and satellite data near nadir. The Root Mean Square Error (RMSE) of the LST retrieved from the simulation data is 0.90 K. Compared with an LST product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat, the error in the LST retrieved from the Infared Atmospheric Sounding Interferometer (IASI) is approximately 1.6 K. The adapted method can be used for the near-real-time production of an LST product and to provide the physical method to simultaneously retrieve atmospheric profiles, LST, and LSE with a first-guess LST value. The limitations of the adapted method are that it requires the minimum LSE in the spectral interval of 800-950 cm(-1) larger than 0.95 and it has not been extended for off-nadir measurements.

3.
Sensors (Basel) ; 15(6): 13406-23, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26061199

RESUMO

The surface temperature (ST) of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800-1200 cm(-1) and a spectral sampling frequency of 0.25 cm(-1). We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...